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Introduction

The Standard Model of Particle Physics

1. describes nature in a economic and elegant way
(spontaneously broken) gauge symmetry



Introduction

DµϕDµϕ→ m2
V VµVµ

q̄LϕdR → md d̄LdR

The Standard Model of Particle Physics

2. generates fermion and boson masses via the Higgs mechanism

confirmed at the LHC!12

1. . . for gauge bosons and heaviest fermions . . .
2. . . SM flavor structure is somewhat mysterious . . .
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neutrino oscillation experiments:
• neutrino have masses too!
• well described by 2 mass differences

& 3 × 3 unitary mixing matrix UPMNS

∆m2
ij, |Uli| well known

CP (and Majorana) phases, mass ordering ?
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neutrino oscillation experiments:
• neutrino have masses too!
• well described by 2 mass differences

& 3 × 3 unitary mixing matrix UPMNS

∆m2
ij, |Uli| well known

CP (and Majorana) phases, mass ordering ?
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• . . . but neutrinos are peculiar . . .
• two possible mass terms

Dirac:

• no νR in the SM
• if νR what forbids

mνRν
T
R CνR?

new mixings in oscillation exp.

Majorana:

• break SU(2)L

• restore SU(2)L

1
Λ
εijεmnLT

i CLm HjHn

at the price of heavy new physics
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76Ge 76Se

M. Duerr, M. Lindner, K. Zuber, ‘11

• double beta decay is rare doubly-weak decay process
• 2νββ allowed in SM

T2ν
1/2(

76Ge→76 Se) = (1.84+0.14
−0.10)× 1021 yr GERDA coll., ‘15
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76Ge 76Se

M. Duerr, M. Lindner, K. Zuber, ‘11

• 0νββ violates lepton number L by two units

(A, Z)→ (A, Z + 2) + e−e−

possible iff νs have a Majorana mass

• L conserved in the SM, 0νββ new physics!

implications for ν mass, leptogenesis . . .
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SNOLAB (CAN)

SURF (USA)

Modane  (FRA)

Gran Sasso (ITA)

Kamioka (JPN)

Canfranc (ESP)

Majorana, LZ

NEXT

PANDA III

KamLAND-Zen 
 

GERDA, CUORE, CUPID

SuperNemo

nEXO, SNO+

WIPP (USA)
EXO-200

CJPL (CHN)

T0ν
1/2 (yr)

76Ge 8.0 · 1025 GERDA
130Te 1.5 · 1025 CUORE
136Xe 1.1 · 1026 KamLAND-Zen

• current bounds already impressive
• next-generation tonne-scale experiments will improve by 1-2 orders

blank
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thanks to V. Cirigliano
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Next generation of experiments sensitive to a variety of LNV scenarios

1. LNV originates at very high scales

direct connection between ν oscillations and 0νββ

clear interpretative framework and goals

e.g. rule out inverted hierarchy
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thanks to V. Cirigliano

GERDA
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mββ = U2
eimi

Next generation of experiments sensitive to a variety of LNV scenarios

1. LNV originates at very high scales

direct connection between ν oscillations and 0νββ

clear interpretative framework and goals

e.g. rule out inverted hierarchy
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thanks to V. Cirigliano
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Next generation of experiments sensitive to a variety of LNV scenarios

2. LNV at intermediate scales

0νββ is mediated by new particles

could be accessible at colliders
general framework to interpret 0νββ exp.?

with controlled uncertainties ?



EFT approach to LNV

operators  
(Long- and pion-range) 

operators  
(short-range) 
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⇠ 100 MeV

⇠ 1 MeV

⇤

⇠ 100 GeV

⇠ 1 GeV

dim � 3

m�� : ⌫ ! ⌫c

⌫ ! ⌫c

0⌫�� 0⌫��

MF , MAA,AP,PP,MM
GT,T MF,sd, MAA,AP,PP

GT,sd , MAP,PP
T,sd

T 0⌫
1/2(0

+ ! 0+)

Electroweak symmetry 
breaking

Match to ChiPT  
(LECs in Table 1)

Construct             
operators (Eq. 24)

NMEs (Table 2)

Phase space integrals  
(Table 4)

0⌫��

n ! pe⌫ ⇡ ! e⌫ n ! p⇡eenn ! ppee ⇡⇡ ! ee

dim � 9

dd ! uuee

dim � 7

(d ! ue⌫) ⌦ @µ

dim � 6

d ! ue⌫

Master formula 
(Eq. 38)

c©2018 W. Dekens & J. de Vries



EFT approach to LNV

• half-life anatomy(
T0ν

1/2

)−1
=

m2
ββ

m2
e

G01 g4
A |M0ν |2 + . . . M0ν = 〈0+|Vν |0+〉

• fundamental LNV parameter parametrize 0νββ w. few coefficients
that can be matched to models

What EFTs can do:

• “phase space factors”
• leptonic structure of LNV operators

• from quarks to hadrons identify QCD input & its uncertainty

• nuclear matrix elements of “ν potentials” systematically derive the ν potentials

check NMEs in simpler systems



EFT approach to LNV

J. Engel and J. Menéndez, ‘16

Final goal:
• help reduce theory uncertainties on M0ν

. . . not quite there yet . . .



The Standard Model as an EFT



The Standard Model as an Effective Field Theory

Write down all possible operators with
• SM fields
• local SU(3)c × SU(2)L × U(1)Y invariance
• dimension ≤ 4

mν = 0
no ∆L interactions

assume no light sterile νR



The Standard Model as an EFT

• why stop at dim=4?

L = LSM +
∑ ci, 5

Λ
O5 i +

∑ ci, 6

Λ2 O6 i +
∑ ci, 7

Λ3 O7 i + . . .

Λ� v = 246 GeV

• O are gauge invariant
• no need to impose accidental symmetries as L

• one dimension 5 operator S. Weinberg, ‘79





1
Λ
εijεmnLT

i CLm HjHn → v2

Λ
νT

L CνL

neutrino masses and mixings

Λ ∼ 1014 GeV
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LNV at dim. 7, dim. 9
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• dim.7 operators mostly induce β decay with “wrong” ν

=⇒ long range contribs. to 0νββ

• dim. 9 induce short-range contributions to 0νββ



Connection to models
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• specific models will match onto one or several operators
• e.g. LR symmetric model

dim. 5, 7 & 9 (with different Yukawas)

can match any model to EFT



Dimension 7 at LHC
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• some limits from pp→ eν: Λ . 2.5 TeV
• no way to disentangle from ∆L = 0 non-standard couplings
• no way to tell Dirac from Majorana



Dimension 7 at LHC
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• to be sure is ∆L = 2:
analyze the neutrino with another weak interaction

pp→ e−e−W+(e+ν)

pp→ e−e−W+(jj)

pp→ e−e−2j

• non competitive for dim. 7 operators
• study for dim. 9



Low-energy EFT for LNV



∆L = 2 Lagrangian at 1 GeV
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v
Λ

v3

Λ3
v3

Λ3 , v5

Λ5

L∆L=2(ν, e, u, d) = −1
2

(mν)ijν
TjCν i + CΓ ν

T C ΓeOΓ + CΓ′e
T C Γ′eQΓ′

quark bilinear four-quark

• match onto a EFT for nucleons?



Interlude: Chiral Effective Field Theory



Chiral EFT

L = −1
4

Ga
µνGaµν + q̄Li /DqL + q̄Ri /DqR − q̄LMqR − q̄RMqL + L∆L=2 + . . .

Chiral symmetry & its spontaneous breaking:

• pions are pseudo-Goldstone a. light, mπ � Λχ = 4πFπ ∼ 1 GeV

b. and weakly coupled

• EFT expansion in powers of {Q,mπ}/Λχ



Chiral EFT. A ≤ 1

dmN
dm2
π

=

∼ 1 ∼ mπ
4πFπ ∼ m2

π

(4πFπ)2

• only one relevant scale Q ∼ mπ

“HQET”-like w. “soft” pion & nucleon modes p ∼ (mπ,mπ)

• perturbative expansion of χEFT Lagrangian

L = L(0) +
1

Λχ
L(1) +

1
(Λχ)2L

(2) . . .

• and amplitudes

A =
∑

an

(
Q
Λχ

)n

derivatives, pion masses & loops suppressed by Q/Λχ



Chiral EFT. A ≥ 2

... ...

∼ 1
F2
π

∼ 1
F2
π

Q
Fπ ∼ 1

F2
π

Q2

F2
π

1. another scale in the problem: Q2/mN

“NRQCD”-like with “potential” p ∼ (Q2/mN ,Q) modes

• resum an infinite class of diagrams
• equivalent to solving Lippmann-Schwinger equation

2. V is organized in powers of Q
Λχ

3. the LO potential is singular (“short-range core”)

• new divergences in solution of LS
• can invalidate power counting based on NDA
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Chiral EFT. A ≥ 2

V = + O
(

Q
Λχ

)

1. another scale in the problem: Q2/mN

“NRQCD”-like with “potential” p ∼ (Q2/mN ,Q) modes

• resum an infinite class of diagrams
• equivalent to solving Lippmann-Schwinger equation

2. V is organized in powers of Q
Λχ

3. the LO potential is singular (“short-range core”)

• new divergences in solution of LS
• can invalidate power counting based on NDA



Nuclear EFT(s)

from D. R. Entem and R. Machleidt, ‘17

see also:

P. Reinert, H. Krebs, E. Epelbaum, ‘18

M. Piarulli et al, ‘16

M. Piarulli et al, ‘14

A. Nogga, R. Timmermans, B. van Kolck, ‘05

D. Kaplan, M. Savage, M. Wise, ‘96

• LECs are fit to data in 2- and 3-nucleon systems
• and predict light-nuclear observables

WARNING: unresolved
issues with power counting



Nuclear EFT(s)

M. Piarulli et al, ‘17

• LECs are fit to data in 2- and 3-nucleon systems
• and predict light-nuclear observables

WARNING: unresolved
issues with power counting



External currents in chiral EFT

Axial current: q̄τ+γµγ5q

from A. Baroni et al, ‘16

gA

two-nucleon currents

• similar expansions for external currents
• consistent interactions & currents:

ab initio solution to long-standing problem in β decays
“gA quenching”



External currents in chiral EFT

P. Gysbers et al, ‘19

• similar expansions for external currents
• consistent interactions & currents:

ab initio solution to long-standing problem in β decays
“gA quenching”



Revisiting the light Majorana-ν exchange mechanism



Chiral EFT approach to light-ν exchange mechanism

n p

n p

e-

e-

L = LQCD −
4GF√

2
ūLγ

µdL ēLγννL −
mββ

2
νT

L CνL

• weak currents are mainly one-body

• 0νββ mediated by exchange of “potential” neutrinos

Vν = Aτ (1)+τ (2)+ 1
q2

{
1(a) × 1(b) − g2

Aσ
(a) · σ(b)

(
2
3

+
1
3

m4
π

(q2 + m2
π)2

)
+ . . .

}
.

A = 2G2
Fmββ ēLC ēT

L

agrees with all 0νββ literature



Standard mechanism. Higher orders

At N2LO O(q2/Λ2
χ)

1. correction to the one-body currents (magnetic moment, radii, . . . )

gA(q2) = gA

(
1− r2

A
q2

6
+ . . .

)
rA = 0.47(7)fm

2. two-body corrections to V and A currents

3. pion-neutrino loops & local counterterms

UV divergences signal short-range sensitivity at N2LO



Standard mechanism. Higher orders

n p

n p

e-

e-

n p

n p

e-

e-

n p

n p

e-

e-

At N2LO O(q2/Λ2
χ)

1. correction to the one-body currents (magnetic moment, radii, . . . )

gA(q2) = gA

(
1− r2

A
q2

6
+ . . .

)
rA = 0.47(7)fm

2. two-body corrections to V and A currents

3. pion-neutrino loops & local counterterms

UV divergences signal short-range sensitivity at N2LOWARNING: based on naive
dimensional analysis

“Weinberg’s counting”



Is the Weinberg counting consistent for 0νββ?

=  ...

• Weinberg’s counting fails in 1S0 channel
D. Kaplan, M. Savage, M. Wise, ‘96

• study nn→ ppe−e− with LO χEFT strong potential

Vstrong(r) = C̃ δ(3)(r) +
g2

Am2
π

16πF2
π

e−mπr

4πr

C̃ fit to 1S0 scattering length

• no problem with Yukawa potential

• and one insertion of short-range potential
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Inconsistency of the Weinberg counting

1
2 (1 + 2g2

A)
(

mN C̃
4π

)2 ( 1
ε

+ logµ2)

• two-loop diagrams w. two insertions of C̃ have UV log divergence

need a local LNV counterterm at LO!

• renormalization requires to modify the LO ν potential

VLNV = Vν − 2gντ (1)+τ (2)+A

• the coupling gν is larger than NDA

gν ∼
1

F2
π

� 1
(4πFπ)2
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Inconsistency of the Weinberg counting

0.005 0.010 0.050 0.100 0.500
RS (fm)

0.035

0.040

0.045

0.050

0.055

0.060

Aν (MeV
-2)

Aν =
∫

d3rψ−p′(r)Vν(r)ψ+
p (r)

gν =
(

mN C̃
4π

)2
g̃ν

g̃ν ∼ b− 1
2 (1 + 2g2

A) log RS

• divergence is not an artifact of dim. reg.
e.g use a gaussian cut-off

C̃ δ(3)(r)→
C̃

π3/2R3
S

e−r2/R2
S

• Aν shows logarithmic dependence on RS (+ power corrections)



Relation between 0νββ and EM isospin breaking
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• the dynamics of QCD seems to imply a short-range component for Vν
• does this happen anywhere else? How to fix finite piece of the coupling?

Charge independence breaking in NN scattering
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Relation between 0νββ and EM isospin breaking

q
L

q
L

q
L

q
L

q
L

q
L,R

q
L,R

q
L,R

q
L,R

• only two I = 2 operators w. same properties as weak/EM currents

LI=2 = c C1

(
N̄QLNN̄QLN −

Tr[Q2
L]

6
N̄τN · N̄τN + L→ R

)

+ c C2

(
N̄QLNN̄QRN −

Tr[QLQR]

6
N̄τN · N̄τN + L→ R

)
QL = u†QLu QR = uQRu†, u = 1 +

iπ · τ
2Fπ

+ . . .

• weak interactions: QL = τ+, QR = 0, cLNV = 2G2
Fmββ ēLCēT

L

• EM interactions: QL = τ z

2 , QR = τ z

2 , ce2 = e2

4



Relation between 0νββ and EM isospin breaking
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• only two I = 2 operators w. same properties as weak/EM currents

LI=2 = c C1

(
N̄QLNN̄QLN −

Tr[Q2
L]

6
N̄τN · N̄τN + L→ R

)

+ c C2

(
N̄QLNN̄QRN −

Tr[QLQR]

6
N̄τN · N̄τN + L→ R

)
QL = u†QLu QR = uQRu†, u = 1 +

iπ · τ
2Fπ

+ . . .

• C1 = gν by chiral symmetry!
• C1 and C2 differ at multipion level

cannot disentangle in NN scattering
but give an idea of 0νββ counterterm



Weinberg counting for isospin breaking operators

• leading I = 2 potential in 1S0 channel from γ exchange & pion mass splitting

VCIB =
e2

4

(
τ

(1)
3 τ

(2)
3 −

1
3
τ (1) · τ (2)

)
1
q2

{
1−

g2
A

F2
π

∆m2
π

e2
σ(1) · qσ(2) · q

q2

(q2 + m2
π)2

}
.

∆m2
π = m2

π± − m2
π0

• short-range contributions suppressed

VS
CIB =

e2

2
C1 + C2

2

(
τ (1) zτ (2) z − 1

3
τ (1) · τ (2)

)
C1 ∼ C2 ∼

1
(4πFπ)2



Relation to charge-independence breaking
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• fit one charge-independent C̃ in np
• compute ann and aC

log divergence! need a ct in each channel



Relation to charge-independence breaking

0.005 0.010 0.050 0.100 0.500
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2
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1. LO analysis of isospin breaking show log dependence

C1 + C2

2
=

(
mN C̃
4π

)2
C̃1 + C̃2

2
∼RS=0.5

16
(4πFπ)2

disagree with Weinberg’s counting!

2. all high-quality chiral & pheno NN potentials include short-range CIB



Impact on 0νββ nuclear matrix elements

RS=0.6 fm

RS=0.3 fm

2 4 6 8 10
r (fm)

-1

1

2

3

4

ρ ( MeV
-1)

Aν =
∫

drρ(r)

nn→ pp

• assume C1(RS) = C2(RS)

• LNV matrix element is scale independent
• effect of short-range potential ∼ 10%

∆I = 0 transition



Impact on 0νββ nuclear matrix elements
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AV18
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S

∆I = 0

• extract CIB potential VS
CIB from AV18 or χEFT (rescaled by cLNV/ce2 )

AV18: ML = 7.45, MS = 0.48
χEFT: ML = 7.82, MS = 1.15

∼ 10% corrections



Impact on 0νββ nuclear matrix elements
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• larger corrections to I = 2 transitions

AV18: ML = 0.653, MS = 0.518
χEFT: ML = 0.725, MS = 0.533

> 50% corrections

• . . . but uncontrolled theory error from assuming C1 = C2!
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• larger corrections to I = 2 transitions
AV18: ML = 0.653, MS = 0.518
χEFT: ML = 0.725, MS = 0.533

> 50% corrections

• . . . but uncontrolled theory error from assuming C1 = C2!



Partial summary: light Majorana exchange

n p

n p

e-

e-

n p

n p

e-

e-

q
L

q
L

q
L

q
L

t+

t+

• chiral EFT uncovers additional source of uncertainty

QCD at Λ ∼ 1 GeV gives non-negligible contributions to Vν

confirmed by isospin breaking in NN scattering
• Vν needs non-ptb matching between QCD & chiral EFT

e.g. Lattice QCD calculation of nn→ ppe−e−

first results on π− → π+e−e− Xu Feng, et al. ‘18

• problem only in the 1S0 channel
Weinberg’s counting ok in 3PJ , 1D2 channels



Chiral EFT for non-standard mechanisms



Chiral EFT for non-standard mechanisms

operators  
(Long- and pion-range) 

operators  
(short-range) 

En
er

gy

SM
-E

FT
SM

-E
FT

’
Ch

iP
T

dim � 5 dim � 7 dim � 9

BSM-
model

Ch
ira

l 
EF

T
M

an
y 

 
bo

dy
 

M
et

ho
ds

⇠ 100 MeV

⇠ 1 MeV

⇤

⇠ 100 GeV

⇠ 1 GeV

dim � 3

m�� : ⌫ ! ⌫c

⌫ ! ⌫c

0⌫�� 0⌫��

MF , MAA,AP,PP,MM
GT,T MF,sd, MAA,AP,PP

GT,sd , MAP,PP
T,sd

T 0⌫
1/2(0

+ ! 0+)

Electroweak symmetry 
breaking

Match to ChiPT  
(LECs in Table 1)

Construct             
operators (Eq. 24)

NMEs (Table 2)

Phase space integrals  
(Table 4)

0⌫��

n ! pe⌫ ⇡ ! e⌫ n ! p⇡eenn ! ppee ⇡⇡ ! ee

dim � 9

dd ! uuee

dim � 7

(d ! ue⌫) ⌦ @µ

dim � 6

d ! ue⌫

Master formula 
(Eq. 38)

need LQCD
input

which 0νββ
operator?



Dim. 9 operators

n p

n p

e-

e-

n p

n p

e-

e-

n p

n p

e-

e-

1. LL LL : O1 = ūLγ
µdL ūL γµdL

2. LR LR : O2 = ūLdR ūL dR, O3 = ūαL dβR ūβL dαR

3. LL RR : O4 = ūLγ
µdL ūR γµdR, O5 = ūαL γ

µdβL ūβR γµdαR

• several unjustified assumptions in the literature . . .

e.g. 〈pp|ūLγ
µdL ūR γµdR|nn〉 = 〈p|ūLγ

µdL|n〉 〈p|ūR γµdR|n〉 = (1− 3g2
A)

inconsistent with QCD, miss chiral dynamics



LNV interactions from dim. 9 operators

n p

n p

e-

e-

n p

n p

e-

e-

n p

n p

e-

e-

• ππ couplings

Lπ =
F2

0

2

[
5
3

gππ1 C(9)
1L ∂µπ

−∂µπ− +
(

gππ4 C(9)
4L + gππ5 C(9)

5L − gππ2 C(9)
2L − gππ3 C(9)

3L

)
π−π−

]
×

ēLCēT
L

v5
+ (L↔ R) + . . .

• size depends on chiral properties of O1,...,5

gππ1 ∼ O(1), gππ2,3,4,5 ∼ O(Λ2
χ)



LNV interactions from dim. 9 operators

n p

n p

e-

e-

n p

n p

e-

e-

n p

n p

e-

e-

• πN couplings, only important for O1

• NN couplings

LNN =
(

gNN
1 C(9)

1L + gNN
2 C(9)

2L + gNN
3 C(9)

3L + gNN
4 C(9)

4L + gNN
5 C(9)

5L

)
(p̄n) (p̄n)

ēLCēT
L

v5

• size depends on chiral properties of O1,...,5

gNN
1 ∼ O(1), gNN

2,3,4,5 ∼ O

(
Λ2
χ

F2
π

)

enhanced w.r.t NDA!



ππ matrix elements

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
ε2π = (mπ/(4πFπ))2

−0.08

−0.06

−0.04

−0.02

0.00

0.02

O
i
[G

eV
4 ]

a ∼ 0.09 fm a ∼ 0.12 fm a ∼ 0.15 fm

A. Nicholson et al., CalLat collaboration, ‘18

gππ1 = +0.4

gππ2 = −(1.8 GeV)2

gππ3 = +(1.0 GeV)2

gππ4 = −(1.7 GeV)2

gππ5 = −(3.6 GeV)2

• ππ matrix elements well determined in LQCD

good agreement with NDA
• nn→ pp will allow to determine gNN

i

and test the chiral EFT power counting



0νββ potential

n p

n p

e-

e-

n p

n p

e-

e-

n p

n p

e-

e-

• NME differ dramatically from factorization
e.g C(9)

4

M = −
gππ4 C(9)

4

2m2
N

(
1
2

MGT
AP,sd + MGT

PP,sd

)
∼ −0.60C(9)

4

Mfact = −
3g2

A − 1
2g2

A

m2
π

m2
N

C(9)
4 MF,sd ∼ −0.04C(9)

4

bigger error than from NMEs . . .



Master Formula

(
T0ν

1/2

)−1
= g4

A

{
G01

(
|Aν |2 + |AR|2

)
− 2(G01 − G04)ReA∗νAR + 4G02 |AE|2

+2G04

[
|Ame |2 + Re

(
A∗me

(Aν +AR)
)]
− 2G03 Re [(Aν +AR)A∗E + 2AmeA∗E]

+G09 |AM |2 + G06 Re [(Aν −AR)A∗M ]

}
.

• G01, . . . ,G09: phase space factors
leptonic structure of the operators

• Aν , . . . , AM: combinations of NME and couplings

Aν =
mββ
me
M(3)

ν +
mN

me
M(6)

ν +
m2

N

mev
M(9)

ν

• organized in powers of Λχ/Λ and Q/Λχ

M(9)
ν = −

1
2m2

N
C(9)
ππ L

(
1
2

MAP
GT,sd + MPP

GT,sd +
1
2

MAP
T,sd + MPP

T,sd

)
+ . . .



Nuclear matrix elements

76 82 130136 76 82 130136 76 82 130136 76 82 130136 76 82 130136

A

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

MF MGT,AA MGT,AP MGT,PP MGT,MM

QRPA, Hyvärinen et al. `15

shell model, Meńendez `17

IBM−2 Barea, et al. `17

calculations differ by
factor of 2-3

• at LO in χEFT, all nuclear matrix elements (NME)
can be expressed in terms of existing calculations

• 8 long-range NME

contribute to light ν exchange

• 6 short-range NME

contribute to heavy Majorana ν exchange



Phenomenology



Phenomenology

C(6)
SL,SR C(6)

T C(6)
VL C(6)

VR C(7)
VL,VR C(9)

1 C(9)
4 C(9)

5

101

102

103

350 300
220

44

11 13

55
85

290 270
200

39

9
16

45
70

Λ
(T

eV
)

Hyvärinen et al. ‘15 Menéndez et al. ‘17

• 0νββ put strong limits on dim. 7 operators
• dim. 9 in the TeV range

pattern can be understood from effective dimension
& chiral properties of 0νββ operator



Phenomenology

C(9)
1 C(9)

2 C(9)
3 C(9)

4 C(9)
5 C(9)

6

101

2.4
4.3 3.4 4.3 5.7

2.5

Λ
(T

eV
)

Menéndez et al. ‘17

• 0νββ put strong limits on dim. 7 operators
• dim. 9 in the TeV range

pattern can be understood from effective dimension
& chiral properties of 0νββ operator



0νββ in the Left-Right Symmetric Model
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mββ
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• generate dim. 5, 7 and 9
• dim. 7 and dim. 9 are chirally suppressed

Case 1 mWR = 4.5 TeV, m∆R = 10 TeV, UR = UPMNS,

mνR ∼ mWR

• strong collider bounds on mWR suppress dim. 7 and dim. 9 contribs.
• light-ν Majorana mass dominates in IH
• dim. 9 sizable in NH, but not in reach



0νββ in the LRSM
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Case 2 mWR = 4.5 TeV, m∆R = 10 TeV, UR = UPMNS,

mνR ∼ 10 GeV
• not ruled out by LEP, LHC searches
• dim. 9 contribution becomes dominant
• in conflict with current 0νββ limits



0νββ in the LRSM

mνR= 10 GeV

mνR =1 TeV

mββ

-1.0 -0.5 0.5 1.0
y =(E1-E2)/Q

0.2

0.3

0.4

0.5

0.6

0.7

1/Γ d Γ/dy

• disentangle LRSM from standard mechanism?
• different isotopes are largely degenerate
• electron energy and angular distributions as well

• need interplay with LHC searches!



Summary

(χ)EFTs & 0νββ decay:
• connection with collider observables
• model-independent parameterization of low-energy ∆L = 2 operators
• systematic organization of ν potentials

Standard mechanism:
• LO short-range potential missing from all existing calculations

additional O(1) contribution

• gν can be guessed from isospin breaking in NN scattering
new LQCD calculations required

Non Standard mechanisms:
• identify QCD input and hadronic uncertainties
• derive minimal sets on neutrino potentials & relate to existing calculations





Backup



Usoft contribution to the amplitude

overlap 〈n|Jµ|i〉
same as in 2νββ!

4. soft neutrinos, which couple to the nuclear bound states

Tusoft(µus) =
Tlept

8π2

∑
n

〈f |Jµ|n〉〈n|Jµ|i〉
{

(E2+En−Ei)

(
log

µus

2(E2 + En − Ei)
+ 1
)

+1↔ 2
}
,

• corrections to the “closure approximation”
• suppressed by E/(4πkF)



Is the Weinberg counting consistent?

D. Kaplan, M. Savage, M. Wise, ‘96

m2
π

( 1
ε

+ logµ2)

• NDA does not work in NN scattering
• mπ dependence of short-range nuclear force should be subleading

L = −C̃(NT P
1S0 N)(NT P

1S0 N)† −
m2
π

(4πFπ)2
D2(NT P

1S0 N)(NT P
1S0 N)† + . . .

4πFπ = Λχ ∼ 1 GeV

• . . . but UV divergences in the LO amplitude require a promotion . . .

conflict between NDA & short-range core of nuclear force



Is the Weinberg counting consistent?

D. Kaplan, M. Savage, M. Wise, ‘96

m2
π

( 1
ε

+ logµ2)

• NDA does not work in NN scattering
• mπ dependence of short-range nuclear force should be subleading

L = −C̃(NT P
1S0 N)(NT P

1S0 N)† −
m2
π

(��ZZ4πFπ)2
D2(NT P

1S0 N)(NT P
1S0 N)† + . . .

4πFπ = Λχ ∼ 1 GeV

• . . . but UV divergences in the LO amplitude require a promotion . . .

conflict between NDA & short-range core of nuclear force



Low-energy Effective Lagrangian for ∆L = 2



∆L = 2 Lagrangian at 1 GeV





L∆L=2 = L∆e=0
∆L=2 + L∆e=1

∆L=2 + L∆e=2
∆L=2

• L∆e=0
∆L=2 includes ν masses, magnetic moments, . . .

L∆L=2 = −
1
2

(mν)ij ν
T j
L Cν i

L + . . . mν ∼ O
(

v2

Λ

)



∆L = 2 Lagrangian at 1 GeV

e



e



e



e



L∆L=2 = L∆e=0
∆L=2 + L∆e=1

∆L=2 + L∆e=2
∆L=2

• L∆e=1
∆L=2 starts at dim. 6, C(6)

i = O
(

v3

Λ3

)
L(6)

∆L=2 =
2GF√

2

{
C(6)

VL d̄Lγ
µuL ν

T
L CγµeR + C(6)

VR d̄Rγ
µuR ν

T
L CγµeR

+C(6)
SL d̄RuL ν

T
L CeL + C(6)

SR d̄LuR ν
T
L CeL + C(6)

T d̄Rσ
µνuL ν

T
L CσµνeL

}
β decay w. the “wrong” neutrino & all possible Lorentz structures



∆L = 2 Lagrangian at 1 GeV

e

e

e

e

e

e

e

e

dim. 7 ops. dim. 9 ops.

• L∆e=2
∆L=2 starts at dim. 9

L(9)
∆L=2 =

2G2
F

v

[ ∑
i=scalar

(
C(9)

i ēLC ēT
L + C(9)′

i ēRC ēT
R

)
Oi + ēRγµC ēT

L

∑
i=vector

C(9)
iV Oµi

]

• a small set receives contributions from dim. 7 operators

C(9)
1 ,C(9)

4,5 ∼ O
(

v3

Λ3

)
, C(9)

i =∼ O
(

v5

Λ5

)
• straightforward to include pQCD corrections



CP violation

TRIUMF

LANL SNS
PSI

TUM
ILL

PNPI

RCNP

nEDM

pEDM, dEDM

ANL/FRIB

mEDM

ACME

J-PARC

ThO, HfF

Hg, Xe, Ra

• current bounds

de < 8.7 · 10−16 e fm
dn < 3.0 · 10−13 e fm

d199Hg < 6.2 · 10−17 e fm
d225Ra < 4.2 · 10−17 e fm

• future bounds

de < 5.0 · 10−17 e fm
dn < 1.0 · 10−15 e fm

d199Hg < 6.2 · 10−17 e fm
d225Ra < 1.0 · 10−14 e fm



Left-right symmetric model


R




L

• model based on SU(3)c × SU(2)L × SU(2)R × U(1)B−L

• broken to SM group at vR & 10 TeV

K-K̄ oscillations and di-jet searches
• generate ν masses via type-I and type-II see-saw

need small Yukawas

• also generate dim. 7, with one Yukawa
• and dim. 9, with no Yukawa suppression
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• also generate dim. 7, with one Yukawa
• and dim. 9, with no Yukawa suppression



Left-right symmetric model
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R

• model based on SU(3)c × SU(2)L × SU(2)R × U(1)B−L

• broken to SM group at vR & 10 TeV

K-K̄ oscillations and di-jet searches
• generate ν masses via type-I and type-II see-saw

need small Yukawas

• also generate dim. 7, with one Yukawa
• and dim. 9, with no Yukawa suppression



Relation to charge-independence breaking

AV18 potential, Phys. Rev. C51 (1995) 38-51

2. in realistic potentials ( AV18, χ-EFT)

VCIB and VS
CIB give effects of comparable size (when Coulomb is perturbative)

• e.g. large C1 + C2 in χ-EFT potentials

C1 + C2

2
∼

50
(4πFπ)2

M. Piarulli et al, ‘16

• same effect in isotensor energy coeff. of light nuclei



Low-energy Effective Lagrangian for ∆L = 2



∆L = 2 Lagrangian at 1 GeV





L∆L=2 = L∆e=0
∆L=2 + L∆e=1

∆L=2 + L∆e=2
∆L=2

• L∆e=0
∆L=2 includes ν masses, magnetic moments, . . .

L∆L=2 = −
1
2

(mν)ij ν
T j
L Cν i

L + . . . mν ∼ O
(

v2

Λ

)



∆L = 2 Lagrangian at 1 GeV
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L∆L=2 = L∆e=0
∆L=2 + L∆e=1

∆L=2 + L∆e=2
∆L=2

• L∆e=1
∆L=2 starts at dim. 6, C(6)

i = O
(

v3

Λ3

)
L(6)

∆L=2 =
2GF√

2

{
C(6)

VL d̄Lγ
µuL ν

T
L CγµeR + C(6)

VR d̄Rγ
µuR ν

T
L CγµeR

+C(6)
SL d̄RuL ν

T
L CeL + C(6)

SR d̄LuR ν
T
L CeL + C(6)

T d̄Rσ
µνuL ν

T
L CσµνeL

}
β decay w. the “wrong” neutrino & all possible Lorentz structures



∆L = 2 Lagrangian at 1 GeV

e

e

e

e

e

e

e

e

dim. 7 ops. dim. 9 ops.

• L∆e=2
∆L=2 starts at dim. 9

L(9)
∆L=2 =

2G2
F

v

[ ∑
i=scalar

(
C(9)

i ēLC ēT
L + C(9)′

i ēRC ēT
R

)
Oi + ēRγµC ēT

L

∑
i=vector

C(9)
iV Oµi

]

• a small set receives contributions from dim. 7 operators

C(9)
1 ,C(9)

4,5 ∼ O
(

v3

Λ3

)
• the remaining operators ∼ O

(
v5

Λ5

)



Next to leading order

 ...+ +

 ...++

 ...+

+

(NT P1S0
∇2N)† NT P1S0

N + h.c.

• include 1S0 derivative operator in ptb. theory
• compute

Aν = −
∫

d3r
(
ψ
− (0) ∗
p′ + ψ

− (1) ∗
p′

)(
Vν(r)− 2gNN

ν δ
(3)
RS

(r)
)(

ψ+ (0)
p + ψ+ (1)

p

)
,



Next to leading order

0.0295

0.0300

0.0305

0.0310

|p|= 10 MeV

|p′|= 39. 5 MeV 0.0160

0.0165

0.0170

0.0175

|p|= 20 MeV

|p′|= 43. 1 MeV

0.0046

0.0049

0.0052

A
L
N

V
(M

eV
−

2
)

|p|= 50 MeV

|p′|= 62. 9 MeV 0.0013

0.0015

0.0017

0.0019

|p|= 100 MeV

|p′|= 107. 0 MeV

10-1 100

RS (fm)

0.00070

0.00075

0.00080

0.00085

0.00090

|p|= 150 MeV
|p′|= 154. 8 MeV

10-1 100

RS (fm)

0.00040

0.00045

0.00050

0.00055

LO

NLO

• small O(Q/Λ) corrections, no need for counterterm



Higher partial waves
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• Weinberg’s counting lead to problems in 3P0,2 waves

=⇒ need LO counterterms in the strong interaction

• neutrino potential in P waves does not require further renormalization



Higher partial waves

2 4 6 8 10 12 14 16 18 20
Λ(fm−1)

10−6

10−5

10−4

10−3

|A
ν|

(M
eV

−
2
)

0 40 80 120 160
|p| (MeV)

10−6

10−5

10−4

10−3

10−2

10−1

1S0

1D2

3P1

3P0
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=⇒ need LO counterterms in the strong interaction

• neutrino potential in P waves does not require further renormalization
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